威尼斯人棋牌-威尼斯欢乐娱人城-首页

具有高扩孔性的高强度冷轧钢板、高强度热浸镀锌钢板及它们的制造方法与流程

文档序号:24941310发布日期:2021-05-04 11:34

本发明涉及一种具有高扩孔性的高强度冷轧钢板、高强度热浸镀锌钢板及它们的制造方法。



背景技术:

近年来,为了汽车的轻量化,正在促进确保具有高强度的钢板的制造技术。其中,在兼具高强度和成型性的钢板的情况下,由于可以提高生产性,因此在经济性方面优异,并且在最终构件的安全性方面也更有利。特别地,具有高拉伸强度(ts)的钢板直到发生断裂为止的支承载荷高,因此对具有1180mpa级以上的高拉伸强度的钢材的需求正在增加。过去进行了许多尝试来提高现有钢材的强度,但只提高强度时,发现存在延展性和扩孔性(holeexpansionratio,her)降低的缺点。另外,作为克服上述缺点的现有技术,可以列举添加大量的si或al的相变诱导塑性(transformationinducedplasticity,trip)钢板。但是,在trip钢板中,虽然可以在1180mpa级的ts下获得14%以上的伸长率,但是由于添加大量的si和al,抗液态金属脆化(liquidmetalembrittlement,lme)性变差,导致焊接性变差,因此存在作为汽车结构用材料的实用化受到限制的问题。

此外,在相同的拉伸强度等级中,根据用途和目的,追求各种屈强比,但具有低屈强比的钢板的情况下,难以制造具有高扩孔性的钢材。这是因为,通常为了降低屈强比,需要导入马氏体或铁素体相作为第二相,但这种组织学特性会成为损害扩孔性的因素。

专利文献1中公开了一种高强度冷轧钢板,所述高强度冷轧钢板兼具屈强比、强度、扩孔性、耐延迟断裂特性,并且具有17.5%以上的高伸长率。但是,在专利文献1中,由于添加高含量的si,发生lme,因此存在焊接性差的缺点。

因此,本发明旨在提出一种1180mpa级钢材及其制造方法,所述钢材在高强度和低屈强比下也具有25%以上的优异的扩孔性,并且显示出5-13%的伸长率和优异的焊接性。

[现有技术文献]

(专利文献1)韩国专利公开公报第2017-7015003号



技术实现要素:

要解决的技术问题

本发明是为了解决上述现有技术的局限性而提出的,本发明的目的在于提供一种具有高强度和低屈强比并具有适于加工的伸长率、高扩孔性和良好的焊接性的高强度冷轧钢板、利用该高强度冷轧钢板制造的高强度热浸镀锌钢板及它们的制造方法。

另外,本发明的技术问题并不受限于上述内容。可以从本说明书的全部内容理解本发明的技术问题,本发明所属技术领域的技术人员在理解本发明的附加技术问题方面没有任何困难。

技术方案

本发明的一个方面的高强度冷轧钢板,以重量%计,包含:碳(c):0.17-0.21%、硅(si):0.3-0.8%、锰(mn):2.7-3.3%、铬(cr):0.3-0.7%、铝(al):0.01-0.3%、钛(ti):0.01-0.03%、硼(b):0.001-0.003%、磷(p):0.04%以下、硫(s):0.02%以下、氮(n):0.01%以下、余量的铁(fe)和其它不可避免的杂质,所述碳(c)、硅(si)和铝(al)的含量满足以下数学式(1),以面积分数计,微细组织包含3-7%的残余奥氏体、5-15%的新生马氏体、5%以下(包括0%)的铁素体、余量的贝氏体或回火马氏体,在所述贝氏体板条(lath)之间或者回火马氏体相的板条或晶界处可以析出并分布有以体积分数计为1-3%的渗碳体相作为第二相。

[数学式(1)][c]+([si]+[al])/5≤0.35%

(其中,[c]、[si]、[al]分别表示c、si、al的重量%。)

所述冷轧钢板还可以包含铜(cu):0.1%以下、镍(ni):0.1%以下、钼(mo):0.1%以下。

所述冷轧钢板还可以包含铌(nb):0.03%以下、钒(v):0.01%以下。

所述冷轧钢板可以具有1180mpa以上的拉伸强度、0.65-0.85的屈强比、25%以上的扩孔性(her)、5-13%的伸长率。

本发明的另一个方面的高强度热浸镀锌钢板可以在上述高强度冷轧钢板的表面上还包括热浸镀锌层。

所述高强度热浸镀锌钢板可以在上述高强度冷轧钢板的表面上还包括合金化热浸镀锌层。

本发明的另一个方面的制造高强度冷轧钢板的方法可以包括以下步骤:准备板坯,以重量%计,所述板坯包含:碳(c):0.17-0.21%、硅(si):0.3-0.8%、锰(mn):2.7-3.3%、铬(cr):0.3-0.7%、铝(al):0.01-0.3%、钛(ti):0.01-0.03%、硼(b):0.001-0.003%、磷(p):0.04%以下、硫(s):0.02%以下、氮(n):0.01%以下、余量的铁(fe)和其它不可避免的杂质,并且所述碳(c)、硅(si)和铝(al)的含量满足以下数学式(1);将所述板坯加热至1150-1250℃的温度范围;在900-980℃的精轧温度(fdt)范围内,将加热的所述板坯进行热精轧;在所述热精轧后,以10-100℃/秒的平均冷却速度进行冷却;在500-700℃的温度范围内进行收卷;以30-60%的冷轧压下率进行冷轧以获得冷轧钢板;在(ae3+30℃至ae3+80℃)的温度范围内,将所述冷轧钢板进行连续退火;将连续退火的钢板以10℃/秒以下的平均冷却速度进行一次冷却,冷却至560-700℃的温度范围,并以10℃/秒以上的平均冷却速度进行二次冷却,冷却至270-330℃的温度范围;以及将冷却的钢板以5℃/秒以下的升温速度进行再加热至380-460℃的温度范围。

[数学式(1)][c]+([si]+[al])/5≤0.35%,

(其中,[c]、[si]、[al]分别表示c、si、al的重量%。)

所述制造高强度冷轧钢板的方法中,所述板坯还可以包含铜(cu):0.1%以下、镍(ni):0.1%以下、钼(mo):0.1%以下。

所述制造高强度冷轧钢板的方法中,所述板坯还可以包含铌(nb):0.03%以下、钒(v):0.01%以下。

所述连续退火步骤可以在830-880℃的温度范围内进行。

本发明的另一个方面的制造高强度热浸镀锌钢板的方法可以进一步包括以下步骤:在430-490℃的温度范围内,对通过上述制造高强度冷轧钢板的方法进行再加热的冷轧钢板进行热浸镀锌处理。

在所述热浸镀锌处理步骤之后,可以进行合金化热处理后冷却至常温。

在冷却至常温后,可以进行小于1%的平整轧制。

有益效果

根据本发明,可以提供一种具有拉伸强度为1180mpa以上的高强度和0.65-0.85的低屈强比并显示出25%以上的高扩孔性、5-13%的伸长率的高强度冷轧钢板和热浸镀锌钢板。

此外,本发明的高强度热浸镀锌钢板的特征在于,镀锌后的抗液态金属脆化(liquidmetalembrittlement,lme)性优异,因此显示出优异的焊接性。

最佳实施方式

本说明书中使用的技术术语仅用于描述特定的实施例,并不用于限定本发明。除非语句表示明确相反的含义,否则本说明书中使用的单数形式还包括复数形式。

本说明书中使用的“包含”和“包括”的含义是指使特定的特性、区域、整数、步骤、动作、要素和/或成分具体化,并不排除其它特定的特性、区域、整数、步骤、动作、要素、成分和/或组的存在或附加。

尽管未另外定义,但本说明书中使用的包括技术术语和科学术语的所有术语具有与本发明所属技术领域中的技术人员通常理解的含义相同的含义。通常使用的词典中定义的术语被进一步说明为具有与相关技术文献和目前公开的内容一致的含义,并且除非被定义,否则不会被说明为理想或非常正式的含义。

以下,对本发明的一个方面的高强度冷轧钢板和高强度热浸镀锌钢板进行详细说明。

首先,对本发明中提供的高强度冷轧钢板的合金组成进行详细说明。此时,除非特别提及,否则各成分的含量表示重量%。

碳(c):0.17-0.21%

碳是通过固溶强化和析出强化来保持钢材的强度的基本元素。当碳的量小于0.17%时,难以在满足其它材质的同时获得拉伸强度(ts)为1180mpa级的强度。另一方面,当碳的量超过0.21%时,焊接性变差,并且不能获得希望的扩孔性的值。因此,本发明中碳的含量优选限制为0.17-0.21%。所述c的下限更优选为0.18%,所述c的上限更优选为0.20%。

硅(si):0.3-0.8%

硅是相变诱导塑性(transformationinducedplasticity,trip)钢的核心元素,所述硅通过阻碍贝氏体区中的渗碳体的析出来起到提高残余奥氏体分数和伸长率的作用。当硅小于0.3%时,几乎不会剩下残余奥氏体,因此伸长率变得过低,另一方面,当硅超过0.8%时,不能防止lme裂纹的形成所导致的焊接部的物理性能的降低,并且钢材的表面特性和镀覆性会变差。因此,本发明中硅的含量优选限制为0.3-0.8%。所述si的下限更优选为0.4%,所述si的上限更优选为0.6%。

锰(mn):2.7-3.3%

本发明中锰的量可以为2.7-3.3%。当锰的含量小于2.7%时,难以确保强度,当锰的含量超过3.3%时,贝氏体相变速度变慢,导致形成过多的新生马氏体,因此难以获得高扩孔性。此外,当锰的含量高时,形成马氏体的起始温度降低,并且在退火水冷步骤中获得初始马氏体相所需的冷却终止温度变得过低。因此,本发明中锰的含量优选限制为2.7-3.3%。所述mn的下限更优选为2.8%,所述mn的上限更优选为3.1%。

铬(cr):0.3-0.7%

本发明中铬的量可以为0.3-0.7%。当铬的量小于0.3%时,难以获得希望的拉伸强度,当铬的量超过作为上限的0.7%时,贝氏体的相变速度变慢,因此难以获得高扩孔性。因此,本发明中铬的含量优选限制为0.3-0.7%。所述cr的下限更优选为0.4%,所述cr的上限更优选为0.6%。

铝(al):0.01-0.3%

本发明中铝的量可以为0.01-0.3%。当铝的添加量小于0.01%时,钢材的脱氧不能充分进行,并且损害洁净度。另一方面,当添加超过0.3%的铝时,损害钢材的铸造性。因此,本发明中铝的含量优选限制为0.01-0.3%。所述al的下限更优选为0.03%,所述al的上限更优选为0.2%。

钛(ti):0.01-0.03%,硼(b):0.001-0.003%

在本发明中,为了提高钢材的淬透性,可以添加0.01-0.03%的钛和0.001-0.003%的硼。当钛的含量小于0.01%时,硼与氮结合,因此硼的淬透性强化效果消失,当含有超过0.03%的钛时,钢材的铸造性变差。另外,当硼的含量小于0.001%时,不能获得有效的淬透性强化效果,当含有超过0.003%的硼时,可能会形成硼碳化物,反而可能会损害淬透性。因此,在本发明中,钛的含量优选限制为0.01-0.03%,硼的含量优选限制为0.001-0.003%。所述ti的下限更优选为0.015%,所述ti的上限更优选为0.025%。所述b的下限更优选为0.015%,所述b的上限更优选为0.0025%。

磷(p):0.04%以下

磷在钢中作为杂质存在,虽然将磷的含量控制在尽可能低的水平是有利的,但为了提高钢材的强度,也会特意地添加磷。但是,当添加过多的所述磷时,钢材的韧性变差,因此,在本发明中,为了防止这种问题,磷含量的上限优选限制为0.04%。所述p的含量更优选为0.01%以下。

硫(s):0.02%以下

如同所述磷,硫在钢中作为杂质存在,并且将硫的含量控制在尽可能低的水平是有利的。此外,硫使钢材的延展性和冲击特性变差,因此硫含量的上限优选限制为0.02%以下。所述s的含量更优选为0.003%以下。

氮(n):0.01%以下

在本发明中,氮作为杂质包含在钢材中,并且将氮的含量控制在尽可能低的水平是有利的。当添加大量的所述氮时,形成过多的氮化物,因此过度的组织微细化导致轧制性降低,无法控制希望的组织,并且还损害冲击特性等最终质量,因此氮含量的上限优选限制为0.01%以下。所述n的含量更优选为0.0060%以下。

除了上述的合金组成之外,本发明的钢板可以进一步包含铜(cu):0.1%以下、镍(ni):0.1%以下、钼(mo):0.1%以下。

铜(cu):0.1%以下、镍(ni):0.1%以下、钼(mo):0.1%以下

铜、镍和钼是提高钢材的强度的元素,本发明中作为可选成分包含铜、镍和钼,并且各元素的添加上限限制为0.1%。这些元素是提高钢材的强度和淬透性的元素,但添加过多的这些元素时,可能会超过希望的强度等级,并且由于是高价的元素,因此在经济性方面,铜、镍和钼的添加上限优选限制为0.1%。另外,所述铜、镍和钼起到固溶强化的作用,因此,当添加少于0.03%的铜、镍和钼时,固溶强化效果可能会甚微,因此添加时铜、镍和钼的下限可以限制为0.03%以上。所述cu、ni和mo各自的上限更优选为0.06%。

除了上述的合金组成之外,本发明的钢板可以进一步包含铌(nb):0.03%以下、钒(v):0.01%以下。

铌(nb):0.03%以下、钒(v):0.01%以下

铌和钒是通过析出强化来提高钢材的屈服强度的元素,在本发明中,为了提高屈服强度,可以选择性地添加铌和钒。但是,当铌和钒的含量过多时,可能会使伸长率过低,并且可能会引发钢材的脆性,因此在本发明中铌和钒的上限分别限制为0.03%以下和0.01%以下。另外,铌和钒引起析出强化,因此即使少量添加也具有效果,但添加少于0.005%的铌和钒时,其效果可能甚微,因此添加时铌和钒的下限可以限制为0.005%以上。所述nb和v的上限分别更优选为0.02%和0.008%。

数学式(1):[c]+([si]+[al])/5≤0.35%

(其中,[c]、[si]、[al]分别表示c、si、al的重量%。)

满足上述的c、si和al的含量,并且c、si和al满足所述数学式(1)。镀覆钢板的液态金属脆化(liquidmetalembrittlement,lme)是在点焊过程中镀覆的锌成为液态的状态下在钢板的奥氏体晶界形成拉伸应力并且液态锌渗透到奥氏体晶界而发生的。这种lme现象在添加si和al的钢板中特别严重,因此本发明中通过所述数学式(1)限制si和al的添加量。此外,当c的含量高时,钢材的a3温度降低,易受lme影响的奥氏体区域扩大,并且具有材料的韧性降低的效果,因此也通过所述数学式(1)限制c的添加量。

当所述数学式(1)的值超过0.35%时,如上所述,在点焊时抗lme性变差,因此点焊后存在lme裂纹,可能会损害疲劳特性和结构稳定性。另外,所述数学式(1)的值越小,则越改善点焊性和抗lme性,因此可以不单独设置数学式(1)的值的下限,但数学式(1)的值小于0.20%时,虽然改善点焊性和抗lme性,但难以同时获得优异的扩孔性和1180mpa级的高拉伸强度,因此数学式(1)的值的下限可以设为0.25%。

本发明的其余成分是铁(fe)。在其它通常的钢铁制造过程中可能从原料或周围环境不可避免地混入不希望的杂质。这些杂质对于通常的钢铁制造过程的技术人员而言是众所周知的,因此在本说明书中不特别提及其所有内容。

另外,满足上述钢组分的本发明的高强度冷轧钢板,以面积分数计,具有包含3-7%的残余奥氏体、5-15%的新生马氏体、5%以下(包括0%)的铁素体、余量的贝氏体或回火马氏体的微细组织。此外,在贝氏体板条(lath)边界或者回火马氏体板条内部或晶界处析出并分布有渗碳体相作为第二相,并且渗碳体相的体积分数可以为1-3%。

在本发明的高强度冷轧钢板中,根据所述数学式(1)的条件限制si和al的含量,从而在微细组织中析出并生长一部分渗碳体,所述si和al通过抑制渗碳体的生长来稳定奥氏体。通过二次冷却形成的马氏体被再加热时,该渗碳体在马氏体板条或晶界处析出,或者在二次冷却后的再加热过程中发生贝氏体相变时,该渗碳体形成在贝氏体铁素体板条之间的碳富集的部分。在本发明的冷轧钢板中,通过根据数学式(1)限制si和al的上限,析出以体积分数计为1%以上的水平的渗碳体,但由于存在一部分si和al,残留有奥氏体,并且碳分布在残余奥氏体内部,因此渗碳体的析出量小于3%。此外,由于添加一定程度的si和al,本发明的钢中残留并存在3-7%的水平的奥氏体,但不像具有非常高的si和al的含量的典型的trip钢那样分布高分数的残余奥氏体。

此外,在本发明中,为了获得低屈强比,以5-15%的水平导入新生马氏体(freshmartensite)组织。在完成二次冷却和再加热的状态下,当奥氏体相的分数高时,奥氏体中的碳含量低,因此稳定性不足,并且在之后的冷却过程中一部分转变成新生马氏体,因此屈强比降低。

此外,在本发明中,虽然铁素体组织不利于扩孔性,但在制造过程中可以以5%以下(包括0%)的水平存在。除此之外,本发明的微细组织中的余量由贝氏体或回火马氏体组织组成。

通过具有上述的合金成分和微细组织,本发明的高强度冷轧钢板即使在1180mpa以上的拉伸强度和0.65-0.85的低屈强比下也显示出25%以上的高扩孔性。如上所述,由于导入新生马氏体,本发明的高强度冷轧钢板具有低屈强比,本发明人发现在本发明的合金成分和组织的控制条件下,即使存在新生马氏体,也可以获得25%以上的扩孔性。此外,在本发明的高强度冷轧钢板中,由于限制si和al的含量,trip效果弱,因此显示出5-13%的伸长率。

本发明还可以提供在所述高强度冷轧钢板表面进行热浸镀锌处理的热浸镀锌钢板和对该热浸镀锌钢板进行合金化热处理的合金化热浸镀锌钢板。

接着,对本发明的另一个方面的高强度冷轧钢板和高强度热浸镀锌钢板的制造方法进行详细说明。

本发明的高强度冷轧钢板可以经过以下工艺来制造:将满足上述钢的成分组成的钢坯进行加热-热轧-冷却-收卷-冷轧-连续退火-一次冷却和二次冷却-再加热,详细的内容如下。

准备钢坯和加热工艺

首先,准备具有上述合金组成且满足数学式(1)的板坯,并将所述板坯加热至1150-1250℃的温度。此时,当板坯的温度小于1150℃时,不能进行作为下一个步骤的热轧,另一方面,当板坯的温度超过1250℃时,为了提高板坯的温度,不必要地消耗许多能量。因此,所述加热温度优选限制为1150-1250℃的温度。所述加热温度的下限更优选为1190℃,所述加热温度的上限更优选为1230℃。

热轧工艺

在精轧温度(fdt)为900-980℃的条件下,将加热的所述板坯进行热轧至希望的厚度。当所述精轧温度(fdt)小于900℃时,轧制负荷大,并且形状不良增加,因此生产性变差。另一方面,当所述精轧温度超过980℃时,过度的高温操作导致氧化物增加,因此表面质量变差。因此,优选在所述精轧温度为900-980℃的条件下进行热轧。所述精轧温度的下限更优选为910℃,所述精轧温度的上限更优选为950℃。

收卷工艺和冷轧工艺

将热轧的所述钢板以10-100℃/秒的平均冷却速度进行冷却至收卷温度,并在500-700℃的通常的温度区域进行收卷。收卷后,将热轧钢板以30-60%的冷轧压下率进行轧制以获得冷轧钢板。当所述平均冷却速度小于10℃/秒时,存在热轧生产性过度降低的缺点,当所述平均冷却速度超过100℃/秒时,边缘部的强度增加,因此宽度方向上的材质偏差可能会增加。所述平均冷却速度的下限优选为20℃/秒,所述平均冷却速度的上限优选为80℃/秒。所述收卷温度的下限优选为550℃,所述收卷温度的上限优选为650℃。当所述冷轧压下率小于30%时,不仅难以确保所希望的厚度的精确度,而且难以矫正钢板的形状。另一方面,当冷轧压下率超过60%时,在钢板边缘(edge)部产生裂纹的可能性增加,并且发生冷轧负荷变得过大的问题。因此,在本发明中,冷轧步骤中的冷轧压下率优选限制为30-60%。所述冷轧压下率的下限更优选为35%,所述冷轧压下率的上限更优选为50%。

连续退火工艺

在本发明中,在(ae3+30℃至ae3+80℃)的温度范围内,将冷轧的所述钢板进行连续退火。更优选地,可以在830-880℃的温度范围内进行连续退火。此外,所述连续退火可以在连续合金化热浸镀连续炉中进行。连续退火步骤是为了加热至奥氏体单相区以形成接近100%的奥氏体,并将所述奥氏体用于之后的相变。当所述连续退火温度小于ae3+30℃或小于830℃时,不能实现充分的奥氏体相变,因此不能在退火后确保所希望的马氏体和贝氏体的分数。另一方面,当所述连续退火温度超过ae3+80℃或超过880℃时,生产性降低,并形成粗大的奥氏体,因此材质变差。此外,在退火过程中氧化物生长,因此难以确保镀覆材料的表面质量。所述ae3可以使用应用本技术领域中通常利用的相图和热化学的计算机耦合(computercouplingofphasediagramsandthermochemistry,calphad)方法的热力学App来进行计算。

一次冷却工艺和二次冷却工艺

将连续退火的所述钢板以10℃/秒以下的平均冷却速度进行一次冷却,冷却至560-700℃的温度范围,并以10℃/秒以上的平均冷却速度进行二次冷却,冷却至270-330℃的温度范围,从而导入马氏体。其中,所述一次冷却终止温度可以被定义为进一步应用未在一次冷却中应用的快速冷却设备并开始快速冷却的起点。将冷却工艺分为一次冷却和二次冷却来分段进行时,在缓慢冷却步骤中使钢板的温度分布均匀,因此可以减少最终温度和材质的偏差,并且有利于获得所需的相组成。

所述一次冷却中以10℃/秒以下的平均冷却速度进行缓慢冷却,并且其冷却终止温度可以为560-700℃的温度范围。当一次冷却终止温度低于560℃时,析出过多的铁素体相,因此最终扩孔性变差,另一方面,当一次冷却终止温度超过700℃时,二次冷却时的负荷过大,需要降低连续退火线的板速度,因此生产性降低。所述一次冷却终止温度的下限更优选为580℃,所述一次冷却终止温度的上限更优选为670℃。

所述二次冷却中可以进一步应用未在所述一次冷却中应用的快速冷却设备,优选可以使用利用h2气体(gas)的氢气快速冷却设备。此时,重要的是将二次冷却终止温度控制在可以获得合适的初始马氏体分数的270-330℃,当二次冷却终止温度低于270℃时,在二次冷却过程中转变的初始马氏体的分数过高,导致获得后续工艺所需的各种相变的空间消失,并且钢板的形状和操作性变差。另一方面,当二次冷却终止温度超过330℃时,初始马氏体的分数低,因此不能获得高扩孔性。所述二次冷却终止温度的下限更优选为290℃,所述二次冷却终止温度的上限更优选为320℃。当所述二次冷却时的平均冷却速度小于10℃/秒时,在冷却过程中形成铁素体/贝氏体相等,导致强度降低,并且可能难以确保最终希望的微细组织。

再加热工艺和热浸镀锌处理工艺

将冷却的所述钢板再次以5℃/秒以下的升温速度进行再加热至380-460℃的温度范围,从而对在之前的步骤中获得的马氏体进行回火,诱导贝氏体的相变,并使碳富集在相邻贝氏体的未转变的奥氏体中。此时,重要的是将再加热温度控制在380-460℃,当再加热温度低于380℃或超过460℃时,由于贝氏体的相变量少,在最终冷却过程中形成过多的新生马氏体,因此极大地损害伸长率和扩孔性。所述再加热温度的下限更优选为440℃,所述再加热温度的上限更优选为440℃。当所述再加热时的升温速度超过5℃/秒时,二次冷却时形成的马氏体相的回火不足,并且在升温过程中可能无法充分获得贝氏体的相变。

再加热后,在430-490℃的温度范围内进行热浸镀锌处理,之后根据需要进行合金化热处理,然后可以进行冷却至常温。之后,为了矫正钢板的形状并调整屈服强度,可以包括进行小于1%的平整轧制的工艺。

具体实施方式

(实施例)

以下,通过实施例对本发明进行更具体的说明。但是,需要注意的是,以下实施例仅用于例示本发明以进行更详细的说明,并不用于限制本发明的权利范围。这是因为本发明的权利范围由权利要求书中记载的内容和由此合理推导出的内容决定。

准备具有下表1的合金组成的板坯,然后根据表2和表3中记载的条件,经过加热钢坯-热轧-冷却-收卷-冷轧-连续退火-一次冷却和二次冷却-再加热工艺,制得冷轧钢板。另外,以下表2和表3中记载的fdt表示精轧温度,ct表示热轧收卷温度,ss表示连续退火温度,scs表示一次冷却终止温度,rcs表示二次冷却终止温度,rhs表示再加热温度。

对于如上所述制造的冷轧钢板,测量微细组织、机械物理性能和最大lme裂纹尺寸,然后在下表3中示出该结果。

对于最大lem裂纹尺寸,在6mm的圆顶半径(domeradius)、3.54kn的电极压力、234ms的焊接时间、100ms的h/t、5度的倾斜(tilting)、1.0mm的间隙(gap)的苛刻的条件下,对试片进行点焊,然后取横穿熔核的任意的截面后测量存在的lme裂纹的最大长度。

对于微细组织的种类和分数,在残余奥氏体的情况下通过xrd峰分析(peakanalysis)进行测量,并且通过扫描电子显微镜ebsd分析测量其余新生马氏体、铁素体、渗碳体、贝氏体和回火马氏体相的分数。

[表1]

[表2]

[表3]

[表4]

首先,比较例1至比较例5是分别应用钢种a至钢种e的情况。钢种a至钢种e是c、mn或cr的含量低于本发明的范围的情况,不能获得ts为1180mpa级的强度。即使是像钢种a至钢种e那样的合金成分添加量不在本发明的成分范围的钢材,当大幅改变退火热处理条件时,可以获得高于1180mpa的拉伸强度,但在这种情况下,需要导入过多的新生马氏体,因此不能获得高扩孔性。比较例6是应用c含量超过本发明的范围的钢种f的情况,即使满足本发明中提出的工艺条件,也不能获得高扩孔性。

比较例7的钢种g是mn含量超过本发明的范围的情况,因此新生马氏体的比例达到20%,导致扩孔性大幅变差,并且屈强比也变得过低。此外,比较例8的钢种h是提高cr含量来代替mn含量的提高的钢种,难以获得低屈强比。

比较例9和比较例10中应用满足本发明的合金组成的钢种i和钢种j,但退火快速冷却温度超过330℃,导致新生马氏体的比例增加,并且扩孔性大幅变差。

发明例1和发明例2是应用满足本发明的合金组成的钢种k和钢种l且满足本发明的所有工艺条件的情况,可以在0.65-0.85的低屈强比下获得25%以上的扩孔性和5-13%的适于加工的伸长率。

比较例6和比较例11中分别应用的钢种f和钢种m具有不满足数学式1的合金量,从而焊接部中的lme裂纹的最大尺寸超过100μm,因此可知抗lme裂纹性差。

另外,在所有实验材料中均未存在重叠部内侧裂纹,所述重叠部内侧裂纹是不允许存在的严重的lme裂纹。

如上所述对本发明进行了说明,但本领域技术人员将容易地理解在不脱离权利要求书的概念和范围的情况下,可以进行各种修改和变形。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1

威尼斯人棋牌|威尼斯欢乐娱人城

XML 地图 | Sitemap 地图